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Unconstrained and constrained minimization, localization, and the Grassmann manifold:
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An unconstrained minimization algorithm for electronic structure calculations using density functional for
systems with a gap is developed to solve for nonorthogonal Wannier-like orbitals in the spirit of E. B. Stechel,
A. R. Williams, and P. J. FeibelmdPhys. Rev. B49, 10 008(1994]. The search for the occupied subspace is
a Grassmann conjugate gradient algorithm generalized from the algorithm of A. Edelman, T. A. Arias, and S.
T. Smith[SIAM J. Matrix Anal. Appl.20, 303(1998]. The gradient takes into account the nonorthogonality of
a local atom-centered basis, Gaussian in our implementation. With a localization constraint on the Wannier-like
orbitals, well-constructed sparse matrix multiplies lea®{dN) scaling of the computationally intensive parts
of the algorithm. Using silicon carbide as a test system, the accuracy, convergence, and implementation of this
algorithm as a quantitative alternative to diagonalization are investigated. Results up to 1458 atoms on a single
processor are presented.
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I. INTRODUCTION The basis sets of DFT and HF are larger and longer range
than in TB, leading to Hamiltoniafor Fock matrices that
In the past decade, numerous minimization techniqueare larger and much less sparse. The longer range, and more
have appeared in the condensed matter literature that solw®mputationally demanding, interactions of HF and DFT
for the ground state in electronic structure calculatibiiA  postpone the crossover point 6(N) minimization com-
common bottleneck in Hartree-Fo¢KF), density functional pared to diagonalization, limiting the benefits of linear scal-
theory (DFT), and tight-binding(TB) methods has been the ing algorithms for finding the ground state solution. The
O(N?®) scaling in the computational effort required to gener-crossover point is achievable at smaller system sizes through
ate the ground state solution, wheXes proportional to the tighter localization regions but only with a loss in accuracy.
number of particles in the system. For systems with an enHence, whether it is advantageous to substitute a linear scal-
ergy gap, e.g., insulators, semiconductors, or moleculeshg minimization for explicit diagonalization depends not
minimization techniques offer methods to calculate theonly on system size, but also on the degree of accuracy de-
charge densities and total energies with computational efforgired in the solution. In this paper, we will examine the ques-
that scales linearlyD(N) with the size of the system. tion of how desired accuracy affects the crossover point at
Minimization techniques achieve linear scaling by takingwhich the linear scaling algorithms become more efficient
advantage of well-known chemical intuition recently sum-than diagonalization in DFT calculations.
marized in the “near-sightedness” principleTwo sufficient We present the implementation of a Grassmann conjugate
separated regions of a molecule, bulk system, surface, etgradient(GCG minimization method into a Gaussian-based
should not interact strongly. Implicit in this principle is a DFT code. We use nonorthogonal orbitals to span the occu-
localization condition: what is a range beyond which inter-pied space, and discuss the technical issues related to the
actions can be neglected? This is not a deterministic quegractical implementation of the minimization algorithm with
tion, but is a balance between accuracy and computationdbcalization. Using this implementation, we investigate the
efficiency. Smaller localization regionsee Sec. Yimply natural length scales of localization regions. The tradeoff be-
longer range interactions are truncated, leading to reduceveen accuracy and computational efficiency and scaling be-
accuracy, but lead to computational savings as fewer matrikavior is discussed in detail. The method is demonstrated in
elements need be computgd(N) minimization techniques full basis calculations of SiC bulk systems containing up to
have mostly been implemented in TB methods, where th@s many as 1458 atoms and 18 954 basis functions.
accuracy is not as greatee most HF and DFT formulations Section Il gives some mathematical background compar-
and thus smaller localization regions are more tolerable. Thang and contrasting the usual eigenvalue problem with the
resulting matrices are sparser, leading to an earlier crossovarinimization algorithms. Section Il introduces the common
point to the regime where linear scaling minimization tech-geometric framework of the minimization techniques: the
niques are more efficient, with acceptable accuracy, than dicrassmann manifoltP?* The aim of this section is to
agonalization to obtain the electronic ground state. present this recent mathematical insight in a concise, acces-
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sible manner and to add new perspectives that pertain tg; is obtained fromEgz andn(r) by Eq.(2.25 of Ref. 23.
linear scaling. Comments on the density matrix formalismsince E; depends upon the contributior(r) makes toH,
are inserted for additional insight and completeness. SectiogT is obtained only after a sufficient number of self-

IV presents our minimization algorithm, which has applica-consistent cycles involving a diagonalization léfat each
tion to any problem that requires the sum of any number otycle.

the lowest eigenvalues of a standard or generalized eigen- This formulation alleviates the burden of orthogonaliza-
value problem and the subspace spanned by the correspongbn of the wave functions. For transformatiofisA=®,

ing eigenvectors. Effort is especially made to ease conceith A being anyNXN nonsingular matrix® spans the
tual Understand|ng Wh|le ma|nta|n|ng mathemaﬂcal r|gor.same Space a\g EB and n(r) are invariant as |0ng as the
The description of vector spaces is general and deals witBquations are generalized to handle nonorthogonality and
possible nonorthogonality at every level. Section V relategack of explicit normalization. The essential informatidy,
how localization of the physical system at different levelsangn(r), traditionally obtained by diagonalization, are now
translates into linear scaling of the minimization algorithm. gptained in a different manner that allows fO(N) scaling
We also present information specific to the linear scalinggr the solution of the ground state.

implementation of the minimization algorithm. Section VI £q5r the N lowest eigenfunctions, the matrix eigenvalue

gives results and numerical analysis for our test system, siligroplem is formally equivalenti.e., ® =) to minimizing
con carbidgSiC). Our intent of this section is to evaluate the the trace of a matrix Rayleigh quotient equatiéh

ability of an implementation of the algorithm to obtain quan-

titatively usable relative energies. We investigate this ability Eg(®)=2 T (d'SD) 10 THD] %)
by mapping out the accuracy of different localization regions
compared to diagonalization. with respect tod, under the constraints thdt'S® =1, and

®'HP=E is a diagonal matrix:® As all occupations are

equal; removing these constraints leaugs unaltered as

long as®'S® is not a singular matrix® is nonorthogonal,
The ground-state total ener@s and charge density(r) and most importantly for our purposes, is made locale

of a molecule or condensed matter are fundamental quantBec. \j. The charge densityi(r) is preserved using

ties of a systerd? Within an independent electron picture,

DFT is a common method to calculate these quantities. There  n(r)=diagonal of Z&(r)(®'s®) 1d'(r")], (5

are two main Vvariational formulations for these

calculations—density matrik-*°and orbital~** approaches.

Both give the same total energy and charge density but o

tain them in slightly different ways. Concerning notation, > ™" ) . o
tains information only about the entire system and not indi-

boldface will be used for vectors and matrices. i = > ;
The standard orbital formulation for systems with a gapwdual states. The band energy is minimized with respect to

solves a generalized matrix eigenvalue problem the density matrbP, a HermitianM X M matrix

Il. MATHEMATICAL BACKGROUND

thus makingE+ equal to the traditional methdd.
b- Another alternative to the eigenvalue equation is the den-
sity matrix formulation, which is similar to Eq4) also ob-

HW = SVE. (1) Eg(P)=Tr[ PH]. (6)
_ S _ ~ As P=d(®'sd) '®T, and from the relation TAB]
For a given representatigbasis set oM functions, H is =TI BA], we can see that E¢4) and Eq.(6) are equivalent.

the M XM Hamiltonian matrix.S is the overlap matrix, and The matrixP is obtained directly without having to calculate

equalsl, the unit matrix, in an orthonormal basi¥. is the ~ @. However the idempotent constraiRSP=P, automatic

M XN matrix comprised of the expansion coefficients of thewhen @7S®)~! is calculated, must be enforced for the

M basis functions for thé\ lowest normalized eigenvectors ground state solution. This is usually done @ae Sec. |||

of H. ¥ diagonalizedH, creating the diagondll XN matrix  the McWeeny purificatiof?

E, and defines theccupiedvector space. In general, the

eigenvectors are delocalized, maki¥ga dense matrix. 3PSP-2PSPSPR-P. (7)
When calculating=r andn(r) of systems with a gap, all

eigenvectors are weighted equalltwo in a spin unpolarized

calculation allowing only the calculation of the collective

properties of the eigenvectors. We define the band energy

Ill. GEOMETRY OF THE VECTOR SPACE:
THE GRASSMANN MANIFOLD

The Grassmann manifd? of rank N is the set of all
Eg=2TE]. (2)  subspaces of rankN in some ambient (primitive)
M-dimensional space. This manifold is comprised of or-
We define¥ (r) to be the projection of theccupiedspace thogonal(or nonorthogonal, but linearly independeatave
onto real space; therefore, if we approximate real space by fainctions or idempotent density matrices. In the density ma-
mesh of 100 pointsW¥(r) would be a matrix of 108N trix representation, each Hermitidvi X M matrix P defines
yielding the electronic occupation. Most matrices have occupation
magnitudegeigenvalues oP) that violate the requirements
n(r)=diagonal of Z¥(r)¥'(r’)], thusr=r'. (3) of an electronic ground state. The occupation magnitudes
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must be 0 or 1 and thus create an idempotent suffattee  for satisfying the constraint with linear scaling effort are con-

Grassmann manifold. ceptually very similar to density matrix methods. Some or-
In the nonorthogonal orbital representation, we rearrangeital method$ °also create a new functional with an implicit
Eq. (4) by defining penalty that keeps the minimization path close to the Grass-
. mann manifold. Other proposals use transformation

OT=(dTsh) 1T, (8) iterationg! on ® or a direct calculatiohof an approximate

(dTsd) ! for remaining on the Grassmann manifold after
each update of.
— It is not plainly evident which method is superior. A non-
Eg(®',@)=Tr & HD] ©) orthogonal orbital method might be preferable over orthogo-

. L — nal methods given that nonorthogonal orbitals are typically
as the functional to be minimized. We choogé as our more localized? 33 due to a prefacto¥* Algorithms that are

variable instead ofb as only the transpose appears in ourallowed to wander off of the Grassmann manifold have
equations. Equatiorf9) is cast in a dual basi$’~**form  spown slower convergence rates than ones that enforce bior-
where @' is the covariant matrix, one forfh or linear  thogonality at every stef. This behavior was only studied
form,3! of the matrix®. Biorthogonality, with orthogonality ~for dense linear algebra, but the properties should also apply
as a special case, is automatically satisfied if the inverse i® sparse linear algebra.

calculated in Eq(8)

yielding

— IV. GRASSMANN CONJUGATE GRADIENT ALGORITHM
P'SO=(DTSP) dTSh=1. (10)
Within the orbital formulation, a Grassmann conjugate
The points in space are still defined by our occupiedgradient algorithrﬁo'zl is used to minimize Eq4). Initially,
space, but the occupied space is now defined@&({)) and We _intro_duce the algorithm_without the com_plexity of IO(_:aI-
is related toP througl?® ization, i.e., no sparse matrices. The essential formulas in the
algorithm appear in Ref. 21 with the exception of the parallel
P=pd! (11) translation of the gradient and the Polak-Ribigormulation
for creating conjugate directions.

If ®" andd are biorthogonal, theR is idempotent; there-

fore, the point[P or (®',®)] resides on the Grassmann .
manifold. Given a nonsinguldd x N matrix A and®, the ~ We need a gradiers=VEg(®) to produce new con-
biorthogonal complement obA (5T ®) and (51\ ®A) jugate search directions for minimizirigs(P). The gradient

' must be in the direction of greatest change of the functional.
thrpugh Eq(11) create the Saf.“@ and thus define the same Even an infinitesimal movement in the direction of the gra-
point on the Grassmann manifold.

An equivalent perspective defines each pointlbgand a dient must caus&g to change in_value; therefore, the gradi-

) i : — ent must have the property that it has no component adong
covariant metric of the occupied subspace creafiigrom  pecause such a direction would not change the valugsof
®. If the correct metric is used, the point lies on the GrassThjs js a property of the functional and does not depend upon

mann manifold. It is in this spac® and a metric, that we the representation. For this to be true, the gradient must lie in
minimize Eg(®), with respect tab, under the constraint that {he tangent plarf@ of ®, a constraint given by

the minimum resides on the Grassmann manifold. The rea-
son for introducing a constraint manifold into a previously dTsG=0. (12
unconstrained problem is that, in an asymptotically linear ) ]
scaling algorithm, the exact covariant metric of the occupied®ince one desires the opportunity to chaiigg®) for any
subspaced'S®) "1, is not calculated. Algorithms must ad- update, all search directions should also have this property.
dress the possible departure and return to the manifold.

If a point P resides off of the Grassmann manifold, itera- B. Inner product

tionslsof Eq. (7) define a set of translations, a McWeeny  Fijrst we must define an inner product. For an inner prod-
path;> resulting in idempotency. Using sparse multiplica- ¢t (.) and an infinitesimal steps in the direction of a dis-
tions, this is anO(N) process enforcing idempotency after yj3cementsV in the tangent plane, the inner product of the

every update oP. Alternatively the polynomial in EQ(7)  gradient with &V must equal the directional derivative in
replacesP in Eq. (6) creating a new functional. In this given by

method, the minimization path ideally moves in close prox-
imity to the Grassmann manifold with the minimum satisfy- (G-6V)=6Eg=d/ds Eg(®+56V)|s_o. (13
ing idempotency.
In the orbital formulation, adhering to the GrassmannThe only form that keeps the inner product invariant between
manifold whend® 'S® is not appreciably spargsee Sec. Y arbitrarily complete representations, for vectats and X,
is straightforward. For these system sizes, it is most efficien@iefined for® at the origin, is
to calculate the dense("S®) 1. Eventually the asymptotic : ot
O(N?®) scaling of the dense inverse will dominate. Methods (X1 Xz)=Rea| T (d'SD) "X SX, ]} (14)

A. Tangency

155203-3



RACZKOWSKI, FONG, SCHULTZ, LIPPERT, AND STECHEL PHYSICAL REVIEW B4 155203

This gives(®-®)=N, formally the same constraint as nor- D. Parallel transport

malization. For the search direction to be tangentlipthe currentZ

must be orthogonal t® ., SO that when Eq(17) is used in
C. Gradient, search direction, and line minimization thel + 1GCG iterationZ, ., will be orthogonal to®,,,,. In
Note that the gradient of a functional should not be con-this manner, Hessian information is properly communicated
fused with its differentiaf® The differential of the from one iteration to the next. This is accomplished to all
functionaf® orders by a parallel transport @f corresponding to the up-
date in®. G, is also translated. In Eq17), Z*" and G|"*"

dEg/dd =2(1 - SPDHHD (P TsD) 2 (15)  replaceZ, andG, respectively.
does not satisfy Eq(12). The gradient Z'=7,+\dZ/S7, (23

G=2(S 1-dd"HHD (16)

does satisfy Eq.12). The differential, Eq(15) lies on a cone
around the gradient. This can be graphically seen in Fig. 3 of
White et al®® It may provide search directions that are suit-
able for minimization, but convergence will be degraded, as The algorithm can be terminated when the change in
the gradient is not used. For efficiency, the differential mayEg(®) or the  norm  of  the  gradient,

be preferable if incorporating* is too expensive. This may Re{T{(®'SP) 'G'SG]}, becomes smaller than a pre-
be the case for finite elementS8or Mehrsteller® finite dif-  scribed threshold. We adopt the latter. Once the threshold is

GM®"=G,+\DZ]SG,. (24)

E. Termination and convergence

ference representations, where the dimensiors @§ typi-  achieved or when a maximum number of iterations is

cally larger than for an atomic orbital basis. reached, we update the Coulomb and the exchange-
The new search directioB, , ; is updated by the Polak- correlation potential using the charge density created from

Ribiere (PR) formula® ®. For dense matrices, a threshold of #®and a maximum

iteration number of 15 was sufficient to obtain results within
Z1:1=G 1 1[{(G|11—G)):G|.+)/(G*G|)]Z,. (17)  afew xRy of diagonalization.
] ) ] This orbital minimization method has utility in any eigen-
This formula gives slightly better convergence than theygjye problem that extensively uses iterative solvers. In elec-
Fletcher-ReevefR) form. A step size\ in the search direc-  onjc structure, this comprises representations having a

A quadratic approximation is used around the cur@rfor ¢ g, plane waves!®!! finite difference’®*! and finite

the step size ok in the directionZ. elementS7:38

Eg(®+A\Z)=Eg(®)+N\Z-dEg/dD+1/2 NZ-H-\Z.
(18 V. SPARSE IMPLEMENTATION OF THE MINIMIZATION

ALGORITHM

The second term is just the normal dot producEZa#ith the . ) ) )
differential. The last term is the matrix eleme{Z,Z) of We use a pseudopotential Gaussian-based atomic orbital
the Grassmann Hessian. The general formula of the matrig"ethod implemented in the serial codeQQuEsTas the
element of the Grassmann Hessian, given two tangent ve&@mework to implement the Grassmann conjugate gradient
torsV, andV,, <33 (GCG) minimization 2algorlthrrf‘. Each basis function is a

single Gaussiare™*” or a contracted Gaussiaa linear

H(Vl,VZ)=2T|[\7{HV2—\7ISV2(FH<D]. (199  combination of Gaussiahsmultiplied by a spherical har-

monic (Y") for the angular dependence. We will refer to a
The overall cost of the calculation ¢f(Z,Z) is equivalent  shell as the set of basis functions with the same radial Gauss-
to the calculation of the gradient because the expensive cajan term and. value for the spherical harmonic but differing
culations ofHZ and SZ are already necessary for the next by the m value. We use a split-valence double zeta with

functional evaluation. polarization(DZP) basis set.
To geth, set The inner shells(L=0,1 for silicon are comprised of
contracted Gaussians with four Gaussians that are short-
dEg(®+AZ)/dA=0. (200 ranged and thus give variational flexibility near the atom.

The outer shell§L=0,1 for silicon have a single Gaussian

The step size is now easily evaluated by using Ed), with a smallera making it longer ranged. The polarization

obtaining shell describes the lowekt value of an unoccupied atomic
\=(Z-dEg/d®)/H(Z,2), 21) shell (L=2 for silicon). The localized nonorthogonal orbit-
als, which define the occupied space, are linear combinations
and® is updated according to of contracted Gaussians and are referred to as orbitals. This
basis set is optimized for accuracy without explicit consider-
D= P—\Z. (22)  ation of sparsity irH andS*3
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A. Sparsity In our implementation of the sparse matrix multiplica-
The implementation of linear scaling requires using a ba—t'ons.’ we fpun(;iaLAs routines to pe very beneficial. W.e usea
é“nultlpllcatlon list for theS® multiplication that holds infor-
mation necessary to access wigas1 contiguous blocks of
gata for the multiplication of a shell-blocked row and the
Yoitals in a localization region. We then uBseAS3 routines
for the multiplication of these dense submatrices. The other
ﬁultiplications are done a similar manner.

sis set whose elements are strictly localized in real spac
e.g., finite elementé®® or a tight-binding basié® or
pseudolocalized in real space, e.g., Gaussians made local
the use of cutoffs. Using a local basid, and S become
sparse once a “sufficient” separation distance between bas
functions is reached. The specifics of théN) evaluation of

H have been discussed elsewl&fé-*3and will not be re-
peated here.

Sparse storage ol XM matricesH, and S is easily With localization, the definition of the gradient, EJ.6),
adapted from the linear scaling dense creation sciféiee  changes. If the fulS™* is calculated, then the result of Eq.
cutoff values that determine if elements are non-negligiblel16) is truncated in order foG to lie in the same space ds
give errors in the total energy less thanuRy/atom. The This method includes geometric coupling from basis func-
sparsity pattern, a list of the positions of non-negligible ele-tions outside of the localization region and thus corrupts the
ments, ofSis used for the storage of surviving elementsfof 9radient by incorporating this information which is inconsis-
and those needed froB1 A benefit of this method is that we (€Nt with the localization. This straightforward approach is
only require the elements & (used in the calculation of the Unnecessarily expensive, @(_Ng) process, and performed
total energy and charge densitpat correspond to the non- poorly compared to the following approach in empirical tests
zero elementsS. The M XN matrices®, Z, and G, have W€ ran. o
strict distance cutoffs input by the user. Only shells within ~ With no localization,S™* accounts for the curvature of
the localization sphere, measured from the center of an ofhe entire primitive spacébasis setin order to align the
bital (atom-centered or bond-centefembntribute to that or- Q|ffgrent|al in the direction o_f greates_t increase. W|th local-
bital. Since each shell has a different spatial extent, ever{zation, the orbitals are restricted to lie in a certain subspace
localized orbital has a separate localization radius for eacRf the primitive space. An orbital is no longer affected by
shell of every type of atom. curvature of the entire primitive space but only by the geom-

The sparsity pattern of the X N matrices of the typ&® etry of the vector space in its localization reglo?i Therefore,
can be determined two ways. The first method is by use ofnly @ square submatrix &, and consequentl$ *, is as-
cutoffs as ford. In the second method, an element is kept if SOCiated with an orbital. This submatrix &fis inverted in
its value is above an input threshold value. In the result9rder to Ob}?m the localized gradient for a given orbital. The
presented in Sec. VI, the sparsity pattern was calculated ar@ftion ofS™~ becomes a matrix multiply of a column df, -
held fixed for each SCF cycle. Since the initial estimatéof @ Single localized orbital, by its corresponding overlap in-
was not sufficient using the second method, the initial SC/€rse. This computation scales linearly.
cycle used the first method and subsequent cycles used the
second method. C. Problems with convergence

A feature of the orbital formulation is that whilé be-
comes sparse and local we still have the information con
tained within an extende# (i.e., our method has the benefit

B. Action of S~

With our implementation of the GCG algorithm including
the effects of localization, the norm of the gradient no longer
! ) converges to zero. We do not know if this effect is a natural
that our local® has th_e same |nfo_rmat|o_n as an extenéied consequence of localization or our lack of fully understand-
of which we only require a local piegeThis is the result of -, yhe gaometry of the new vector space of localized orbit-
the extended nature of the biorthogonal complem@it  4is. However, as long as the convergence is consistent and to
(which is never explicitly stored The ability to separate the 3 small enough value, the algorithm is reliable. The consis-
localization lengths’ scalevia localized nonorthogonal or-  tency provides a cancellation of errors in the relative ener-
bitals) while maintaining a less localized even delocalizedgies, and some suitably small value of absolute error exists
density matrixP, is not possible with either localized or- for any problem.
thogonal orbitals or a density matrix formulation. The norm of the gradient cannot be used as the stopping
®TSP and®'H® become sparse next and can be quitecriteria. The convergence is measured by
dense due to the interaction of the occupied orbitals mediated
by H and S. Since sparsity occurs at different stages it is y=G-dEg/dd. (25)
advantageous for the algorithm to exploit this property. If the
matrices are sparse, the matrix multiplications can be carrieWithout localization, this is exactly the norm of the gradient.
out in O(N) steps by computing only those elements that are Also arising from localization, the step sizg, can give
nonzero. A matrix needs to be significantly sparse, abouan increase in the energy. This occurs more often with small
10% of elements being nonzero, before sparse routines béscalization regions. A version of Brent's algoritAtnhas
come faster than machine-dependent optimized dense robeen implemented to ensure a decreas&gn For small
tines. For the system sizes studied, the sparsith @ and  localization regions, sometimes a decreas&incannot be
®TH® did not warrant sparse multiplications, and thus werefound in the search direction. The basis functions necessary
kept dense. A similar observation was noted in Ref. 9. for a decrease have been made inaccessible due to localiza-
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TABLE I. Structural and energetic results with diagonalization ~ TABLE Il. I'" point energies of supercells derived from equiva-
respectively compared to experimental and theoretical values.  lent k-point calculations involving the primitive unit cells

Exayn—Ec Ry/atom
A (Bohr) cla (mRy/atomn) No of atoms 3C 2H 4H

Cubic 4.095 Preseht 64 9.698 64 9.707 85 9.686 01

4.054 Pwi 128 9.698 76 9.700 90 9.700 86

4.091 LMTO 200 9.702 68 9.702 66

4.118 PW2 250 9.702 19

4.120 EXPT 288 9.703 16 9.703 14
2H 5.781 1.642 0.251 39 Present 432 9.703 12

5.728 1.637 0.066 17 PW1 686 9.703 39

1.644 0.198 52 LMTO 1024 9.703 48 9.703 26

5.805 1.641 PW2 1176 9.703 49

5.813 1.641 EXPT 1458 9.703 52
4H 5.785 3.275 —0.034 25 Present

5.730 3.274 —0.13971 PW1

sampling, to obtain(without explicit calculatioh the total

~0.08823 LMTO energy for al” point sampling of the Brillouin zone of the
5.800 PW2 large supercells by using equivaldapoint sampling® of the
5.807 3.2711 EXPT primitive unit cells. Table Il gives the energy/atom of the
different phases for different supercells.

Varying the localization region, we investigated the accu-
racy, convergence, and scaling of computational effort with
system size fofl" point calculations of 64 to 1458 atoms. The
initial occupied orbitals were formed fromp® hybridizing
the inner shells. The determination of the required accuracy,

tion. The GCG algorithm is restarted as an attempt to aIIew-Le_' the energy differences to be resolved, and the corre-

ate this problem. S_ome.t|mes a decreasg cannot be foun.gponding localization region is logically the first step in these
even when the gradient is used. The algorithm is then termizculations. Generally, if the localization region is in-
nated. creased, higher accuracy is obtained. The localization used
also affects directly the convergence and computational ef-
VI. RESULTS FOR SILICON CARBIDE fort. ) .
We start with the 64-atom system. Energies were calcu-
We test the accuracy of the GCG algorithm to resolvelated with the relaxed geometry from the convergepoint
relative energies between different systems with different localculationsS® had full growth. Table Il gives the energies
calization regions. SiC, a wide gap semiconductor that cafor the different phases for a given localization including the
be operated at high temperature and high pressure, was chdiagonalization result for reference and the corresponding
sen for its technological importari@eand for its multiple  energy difference with the 2H phase. The localization is
crystal phases, providing a good test suite for the accuracy ajiven in order as the cutoff radius for the inner, outer, and
the total energy calculations. Relative energy differences bepolarization shells. A corresponds to an orbital whose lo-
tween the 3Qcubig and the 2H and 4Hhcp) phased' are  calization region is centered between two atoms aisifor
used for this purpose. an atom-centered orbital. For example{®4,5b} setting
As a check of the basis set, Table | compares our condefines bond-centered orbitals with the localization radius of
verged calculations using diagonalization within the localthe inner and polarization shells longer than outer shells.
density approximation(LDA) to structural values from Four atom-centered orbitals on carbon were used for the
experimenf? and recent relative energy calculations usinglarger localization region as the code takes advantage of
plane wave¥? (LDA) and LMTO (Ref. 53 (GGA). We  shared sparsity patterns among orbitals to use less memory
relaxed the internal positions for the hcp phases. Our latticand run faster. Aa 7 Bohr radius cutoff, the code was more
constants lie within 1% of experiment as do one of the planeiccurate and efficient for atom-centered orbitals than bond-
wave and the presented LMTO resuli®npresented results centered orbitals.
were stated to lie within 19All c/a ratios of the hcp phases After four SCF cycles, the diagonalization calculations
are in good agreement with experiment. We obtain the propewere converged to within 0.1 mRy/atom. For an equitable
energetic ordering of the phases, with differences on the orcomparison with diagonalization and varying localization,
der of 0.1 mRy/atom. the energy values in Table Il are given after four SCF cycles
For the two-atom 3C phase, we use up to &12X12  and a maximum of 15 GCG iterations with a stopping crite-
Monkhorst-Pack mesh. For the four-atom 2H and eight- rion of y=10"1°. We concentrate on the effects of the local-
atom 4H we used up to @914Xx 14 and a 310X 10 mesh, ization radius for the inner and outer shells on the absolute
respectively. We include th& point, k=0, for thek-point  and relative energies. From the bond-centered calculations,

8Reference 51.
bReference 52.
‘Reference 50.
dPresent worKLCAO).
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TABLE Ill. Energy in units of Ry/atom, for varying localization regions in the 64 atom SiC system.

Energy/atom
3C AE(2H-3C) 2H AE(2H-4H) 4H
Diagonalization 9.698 64 0.009 20 9.707 85 0.021 83 9.686 01
{5,4,5b} 9.690 65 0.010 83 9.701 49 0.023 28 9.678 21
{4,5,5)p} 9.678 91 0.011 92 9.690 84 0.024 17 9.666 67
{5,5,5)} 9.692 08 0.01171 9.703 78 0.024 09 9.679 69
{7,5,7b} 9.693 43 0.012 00 9.705 43 0.02359 9.681 84
{5,7,7b} 9.693 64 0.011 33 9.705 27 0.023 36 9.681 91
{7,7,7b} 9.694 18 0.011 65 9.705 83 0.023 08 9.682 75
{7,7,7a} 9.697 06 0.009 83 9.706 90 0.023 06 9.683 84
{9,794} 9.697 97 0.009 32 9.707 29 0.022 37 9.684 92
{7,994} 9.697 95 0.009 26 9.707 21 0.022 16 9.685 05
{9,994} 9.698 24 0.009 17 9.707 41 0.022 00 9.685 41
{9,11,9a} 9.698 38 0.009 18 9.707 56 0.022 01 9.685 55
{11,9,9a} 9.698 31 0.009 21 9.707 52 0.021 98 9.685 54
{9,12,9a} 9.698 60 0.009 05 9.707 65 0.021 90 9.685 75
{12,9,9a} 9.698 43 0.009 11 9.707 56 0.021 95 9.685 61
{11,11,11a} 9.698 43 0.009 21 9.707 65 0.022 03 9.685 62
{12,12,12a} 9.698 63 0.009 14 9.707 77 0.021 88 9.685 89

we find that near the center of the localized orbital, the innesome steps. In Fig. Xy becomes and stays negative at itera-
shells have a larger impact on the accuracy of the total antion number 39. Note that for no localization, the GCG al-
relative energies than the more diffuse outer shells. The innegorithm converges linearly as in sta¢p.
shells give more variational freedom where the orbital has Initially, the largest gradient values are for the shells near
the highest probability and the strongest interactions, i.ethe center of the localized orbital. This corresponds to the
near the center of the bond. good initial convergence that results from the orbitals being
With the localization radius between 5 and 9 Bohr, aallowed to change in the directiofshelly of steepest de-
larger radius for the inner shells gave lower total energies foscent. As the gradient gets small, the size of the gradient for
the 3C and 2H structures, but higher for 4H. In this range, dahe shells within the localization region becomes comparable
larger radius for outer shells gave better accuracy for alto the size for shells outside of the localization region. The
energy differences. Above 9 Bohr, a larger outer-shell radiugrror in the gradient due to localization is nhow of the same
gave lower total energies for all structures, but the relativeorder of magnitude as its length. Thus, the GCG convergence
accuracy was mixed. Accuracy of the relative energies of lesstalls, as orbitals are not allowed to move in directions nec-
than 0.2 mRy/atom, which is on the order of the energy dif-essary for a significant decrease in the energy. Localization
ferences for the converged results, was obtained for a radiusas effectively cut off the bottom of the bowl that makes the
of 9 Bohr for each shell. The 9 Bohr radius corresponds taninimum. Since the direction that would taleto the bot-
the extent of the orbitals of silicon determined by the cutoffstom is not available, the orbitals wander around the edge of
already in SEQQUEST which give an accuracy of LRy/  this cut. At the end, the sharp drop is most likely due to the
atom. A radius of 12 Bohr gave an accuracy of better thariwo vectorsG anddEg/d® becoming perpendiculaZ and
0.1 mRy/atom(also obtained wit a 9 bohr radius after 10
SCF cycleg The SCF and GCG convergence with a larger 10"
radius for the outer shell did generally better. e
The convergence to the GCG algorithm impacts the effi- _ 10" | *,
ciency and accuracy of a calculation. As a measure of cong 4o | .
vergence for the GCG algorithm, we plot, in Fig. 1, the ab- < s |
solute value ofy for the {5,4,5b} setting of the 64-atom & 0" |
system for the first SCF cycle. Figure 1 shows three distinctZ 1o7
stages for the convergence of the GCG algoritiith:starts =< ‘ .,
with linear convergence typical of a conjugate gradient algo- 107 | ‘o,
rithm, (2) hits a region of flat convergence, a(8] then ends 10—11‘
with linear convergence. This behavior is exhibited for all 0 10 20 30 40 50 60
sizes of localization regions and occurs similarly in subse-
guent SCF cycles. The duration of each stage and the corre-
sponding transition points vary with localization radius.
Stage(3) is generally accompanied by being negative at

.
00,
000,%%%0, oo

%t o Co, 0%
oo %o P
-

iteration

FIG. 1. G-dEg /d® vs iteration number for th§5,4,5b} setting
for the 64 atom unit cell of SiC.
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TABLE IV. setting 0f{9,12,9a} with the growth,x=10"°. TABLE V. Setting of{5,4,5a} with the growthk=5x10"3,
{9,12,9a} Energy/atom {5,4,5a} Energy/atom
3C 2H 4H 3C 2H 4H
128 9.698 50 9.700 53 9.700 48 128 9.690 78 9.690 89 9.691 10
200 9.702 22 9.702 18 200 9.691 62 9.691 83
250 9.701 77 250 9.692 96
288 9.702 69 9.702 63 288 9.691 99 9.692 09
432 9.692 70
dEg/d® also become perpendicular at this stage. This be- 686 9.692.44
havior can result in local minima being encountered, but de- 1024 9.69349 9.69159
1176 9.692 67

pending on the localization region the difference in energy
between the global and local minima may be within the de- 1458 9.692 77
sired accuracy.

As convergence with localization differs from the dense
case and since accuracy depends on the convergence, c&ightedness” principle to take effect. T’ scaling of the
vergence criteria require investigation. Because the stoppinjversion of the occupied spade’S® begins to be substan-
criterion Offy: 10~ 10 is rare|y met in a reasonable number of tial around 1000 atoms. The tlmlng for the 1458-atom SyStem
iterations, the maximum number of iterations is more crucialis smaller than expected. The impact of ti& parts should
Generally, 15 iterations achieve the same accuracy as largéfuse increasing deviation from a horizontal line. We at-
number of iterations. In some cases better accuracy is oftibute this discrepancy to fluctuations in timing due to run-
tained with more iterations, but it is probably more efficientning on a nondedicated machine or possibly cache effects.
to use a larger localization region. For the 1458 atom system, 11.6% of the element tBd

A suitable stopping criterion for SCF convergence alsodr€ nonzero so at this point an asymptotically linear scaling
depends on the localization. A larger localization region will minimization might become more efficient.
achieve SCF convergence comparable to diagonalization, In Fig. 3, we show a plot of times) vs diagonalization
and a smaller localization may never achieve the stoppingnd optimization with two localization region§5,4,5b}
criteria used for diagonalization calculations. Since less acand{9,12,9a}). This plot displays the large disparity in the
curacy is expected from smaller localization regions, thecrossover point that occurs for different localization regions.
SCF convergence can be stopped for a larger energy diffeFFor the {5,4,5p} setting, the crossover point is obtained
ence than for diagonalization and larger localization regionsgarly (less than 200 atomsbut the results are less accurate
For example, one can deem #&4,5} converged once the than diagonalization. For th§9,12,9a} setting, the results
energy change is less than 1 mRy/atom; higher accuracy @&'e as accurate as diagonalization, but the crossover point is
not expected. This is achieved in 4 SCF cycles. Theobtained much latefapproximately 700 atomsThese num-
{9,12,9a} converges to within 0.1 mRy/atom after 4 SCF bers are very important when deciding if a linear scaling
cycles. If the SCF takes too many cycles for the desiredlgorithm is suitable for a certain problem. If one is looking
convergence, then one needs a larger localization region. at energy differences of-3 mRy/atom or only qualitative

We now concentrate on the growth parameterfor the  effects, the{5,4,5} setting is sufficient. For very accurate
250-atom cubic unit cell using thg5,4,5} setting, a sig- calculations for systems up to at least 700 atoms, diagonal-

nificant drop in total energy was seen above 5x 10 3. ization is required. The Lapack routimesyGvx, which cal-
For the accuracy expected of this system, growth cutoffs for
the first SCF cycle were not crucial. For th@,12,9a} lo- 0.1
calization, we looked at several system sizes to determine the 0.09 . ¢
growth value necessary to keep the same accuracy and the 0.08 |
proper energetic ordering of the crystal phases. For the larg- A
est system we usea,= 10 2 was sufficient. The growth for ol 0.06 -
the first SCF cycle wagl2,15,12 using the naming conven- £ 155
tion for the localization region. The results are presented in = 4
Table Ill. The accuracy for thg5,4,5b} localization is pre- 2 Sl
sented in Tables IV and V. This localization did not obtain O 0031,
the proper energetic ordering at every supercell size but did 0.02 1
succeed with the proper ordering for the largest supercell 0.01 |
done. 0 : ;
As a test of the scaling for th¢5,4,5b} setting, we 0 500 1000 1500 2000

present in Fig. 2 the timing for 1 GCG step per orbital vs
number of atoms. In contrast, perfect linear scaling gives a
horizontal line. At smaller systems, linear scaling is not ex- FIG. 2. CPU time for one GCG step per orbital for 4,5 b}
pected because the length scales are too small for the “neasetting vs No. of atoms.

Number of Atoms
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70000 rithm to be as efficient as possible for systems in the range of
200-1500 atoms. We also have discussed the geometry of
60000 - the involved vector spaces with reference to recent work
concerning the Grassmann manifold.
50000 The orbital solutions can be restricted in space, a localiza-
&L tion region, with significant savings in memory requirements
“E’ 40000 and computational effort. In our results, we have focused on
i accuracy as being the motivating factor in determining how
> 30000 - and if the new minimization method code should be used
& instead of explicit diagonalization. The accuracy of relative
20000 - energies of the cubic, 2H, and 4H phases of silicon carbide
has been mapped out for different localization regions. We
10000 showed increasing levels of accuracy with increasing spatial
extent of the localized orbitals. The crossover point with di-
0 - ‘ ‘ agonalization for timings of the whole self-consistent cycle
0 500 1000 1500 ranges from 200 to roughly 700 atoms depending on the
Number of atoms accuracy desired. This establishes the method to be a prom-

ising quantitative tool for approaches utilizing Gaussians and
other linear combination of atomic orbitals. Forces have been
implemented and work utilizing them will be presented in a

. . . future paper.
culates a given number of lowest eigenvalues and eigenvec-

tors, from the optimized librarpxmL was used. All of the
times are for a nondedicated serial 440 Mhz DEC worksta-
tion. The user time from the functioemrIME was used.

FIG. 3. Timing for 4 SCF cycles for diagonalizatipf,12,94a]
and[5,4,5b].
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